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In many dynamical systems, an invariant manifold attracts the phase-space flow. These
manifolds can be approximated by an iterative method based on a functional equation treat-
ment. However, a convergent mapping is not automatically generated from the functional
equation. Nevertheless, it is possible to construct a convergent mapping by a simple mod-
ification of the original functional equation. As an example, a convergent sequence of
approximations to the slow manifold of the Michaelis–Menten system is constructed.

1. Introduction

In many dynamical systems, an invariant manifold attracts the phase-space flow
so that the eventual dynamics is shadowed by a trajectory contained in a manifold
of lower dimensionality than the full phase-space. This fact is of immense practical
utility [10]: If the manifold can be constructed, the original system can be reduced to
a lower-dimensional system which, at least after the decay of transients, is completely
equivalent to the original. The lower-dimensional system is frequently more convenient
to study: If the original system of differential equations was stiff, the reduced system
frequently is not [6]. Smaller systems of equations are also far easier to handle so that
a more thorough analysis of the system’s behavior is often possible on the manifold
than in the full phase-space [3].

Chemical kinetics is a rich source of invariant manifold (and inertial manifold
[20]) problems ranging in size from small [2] to large [7,19]. Fraser has proposed a
relatively simple method for approximating attracting invariant manifolds of systems
of ordinary differential equations (ODEs) [2]. The method is also applicable to initial-
value partial differential equation (PDE) problems [8,14]. An invariant manifold is
so called because it is mapped into itself under the action of the propagator of the
dynamical system. Fraser used this invariance to derive a functional iterative scheme
directly from a system of ODEs which, under favorable conditions, converges to the
manifold. In principle, Fraser’s method can be applied to a broad range of manifold
approximation problems either analytically or numerically.
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It has been known for a few years that Fraser’s method can diverge when the
curvature of the manifold being approximated is too high [13] although, until recently
[11], no concrete example of divergence was known. A method for producing a con-
vergent functional iteration scheme has been developed [11,12]. This method is now
being presented to a broader audience because it may have widespread applications,
both in manifold approximation and more generally in any problem where fixed-point
iteration is used to solve a functional equation.

2. The Michaelis–Menten system and its slow invariant manifold

The Michaelis–Menten mechanism is the basic building block for all enzymolog-
ical modeling [5]. The evolution of this system is governed by the ODEs [8]

ds
dt

=−k1s(eT − c) + k−1c,

dc
dt

= k1s(eT − c)− (k−1 + k−2)c,

where s is the concentration of a reactant (normally called a substrate), c is the con-
centration of an enzyme-substrate complex, eT is a constant of the motion arising from
enzyme mass conservation and the ki’s are rate constants. Defining

x= k1s/(k−1 + k−2),

y= c/eT ,

τ = k1eT t,

α= k−1/(k−1 + k−2),

ε= k1eT /(k−1 + k−2)

and letting overdots denote differentiation with respect to the scaled time τ , we obtain
the dimensionless equations

ẋ=−x(1− y) + αy, (1a)

ẏ=
[
x(1− y)− y

]
/ε. (1b)

Throughout this paper, our attention will remain focused on the physically realizable
part of phase-space, namely, Γ+ ≡ (x > 0) ∪ (0 6 y 6 1), with physically sensible
values of the parameters, i.e., 0 < α < 1 and ε > 0.

The Michaelis–Menten system (1) has been extensively studied: Since this system
represents a closed, isothermal chemical system, its equilibrium point (x = y = 0)
is globally stable [4,17]. The equilibrium point is always approached along a one-
dimensional (slow) invariant manifold M which attracts the phase-space flow [8,9,13,
14] (figure 1). This slow manifold is a solution of the trajectory equation

y′ =
dy
dx

=
ẏ

ẋ
=

x(1− y)− y
ε[−x(1− y) + αy]

. (2)
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Figure 1. Trajectories for the Michaelis–Menten system with α = 0.6 and ε = 5. Note that nearly all
trajectories approach the equilibrium point along a one-dimensional manifold M. This manifold lies

between the x and y nullclines (X and Y).

In order to prove the theorems of the next section, we need to establish some facts
about the geometry of the slow manifold of this system. We first prove that the slow
manifold exists and has a positive slope everywhere in the physically realizable part
of phase-space Γ+. To prove this, we first note that the eigenvalues of the Jacobian of
equations (1) are negative everywhere in Γ+. (The proof of this proposition is easy but
tedious since the characteristic polynomial can be solved analytically.) This means that
the flow always contracts distances between nearby coevolving points. Furthermore,
the flow is into the region bounded by the two nullclines (the curves X ≡ (ẋ = 0)
and Y ≡ (ẏ = 0)). (See figure 1. The proof of this fact is also elementary.) Thus yM
must lie within this region. The equations of these nullclines are

yX (x) = x/(x+ α), (3a)

yY(x) = x/(x+ 1). (3b)

X always lies above Y since 0 < α < 1. However, in the limit of large x, both
yX → 1 and yY → 1. Since nearby trajectories cannot diverge from one another and
since the flow is into the region bounded by X and Y , there is a unique trajectory
which attracts the flow in this region. Furthermore, since between the two nullclines
ẋ < 0 and ẏ < 0, y′ > 0 for all trajectories in this region and, in particular, y′M > 0.

Near the equilibrium point, the equation of the slow manifoldM can be expanded
in a Taylor series [8]:

yM(x) = σ1x+ σ2x
2 + · · ·
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(σ0 = 0 because yM(0) = 0). Substituting this functional form into equation (2) and
keeping only leading-order terms, we obtain a quadratic equation for σ1. The two
roots have opposite signs but we know that M must have a positive slope so

σ1 =
ε− 1 +

√
(ε− 1)2 + 4αε
2αε

.

Asymptotically (at large x), the slow manifold can be expanded in the form

yM(x) = ρ0 + ρ1/x+ ρ2/x
2 + · · · .

By substitution into the trajectory equation, we find

ρ0 = 1, (4a)

ρ1 =−1, (4b)

ρ2 = 1, (4c)

ρi =−ρi−1 + ε
i−2∑
j=1

jρj (ρi−j−1 + αρi−j−2), (4d)

where equation (4d) is used for i > 2.

3. The Fraser iterated functional mapping

A method for obtaining analytic approximations to the slow manifold has been
proposed [2] and studied [13]. The slow manifold is a solution of equation (2) and
thus is a fixed point of the functional equation

y = F (x, y′) =
x(1 + εy′)

(x+ α)(1 + εy′) + 1− α (5)

obtained from the trajectory equation by simple inversion. This functional equation is
used as the basis of an iterative scheme

yn+1 = F (x, y′n). (6)

A suitable starting function y0(x) must be chosen.
We now prove that this mapping always converges near the origin and for x→∞

under mild assumptions about the initial function. Suppose that the initial function y0

has a Taylor expansion near the origin with y′0(0) > 0. Then clearly

lim
x→0

yn = 0 ∀n > 0.

We may therefore assume that yn = σ(n)
1 x + O(x2) without loss of generality. To

lowest order, the mapping (6) becomes

σ(n+1)
1 =

1 + εσ(n)
1

1 + αεσ(n)
1

.
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Figure 2. Slow manifold (solid line) and approximations generated by the Fraser iterative method for
α = 0.2 and ε = 10. Iteration is started from the y nullcline (– – – –). The second (– · – ·), fourth

(· · · ·) and fifth (– · · ·) iterates are shown.

By a standard method [16], it can be shown that the sequence σ(n)
1 converges to σ1

for every σ(0)
1 > 0.

The proof of convergence in the limit of infinite x is a little more involved and is
only sketched here. The complete proof can be seen in the author’s thesis [11]. First
note that if y0 is differentiable as x → ∞ and y′0 > 0, then yn → 1 as x → ∞ for
all n > 0. Next assume that yi is an iterate of y0 whose asymptotic expansion agrees
with that of yM to O(x−m). (The initial function must itself have a regular asymptotic
expansion.) Thus

yi =
m∑
i=0

ρix
−i + O

(
x−(m+1)).

We subject this function to the mapping (6) and obtain the asymptotic expansion of
the result. By a simple inductive argument, we obtain

yi+1 =
m+2∑
i=0

ρix
−i + O

(
x−(m+3)),

i.e., we gain two coefficients of the asymptotic expansion for every iteration of the
mapping.

At intermediate values of x, we must use linearized stability analysis to determine
the behavior of the mapping (6). Elements of this analysis have previously been
published [13]. Define

δyn(x) = yn(x)− yM(x).
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When the derivative of δyn(x) is sufficiently small,

δyn+1 = δy′n
dF
dy′

∣∣∣∣
M

(7a)

with

dF
dy′

∣∣∣∣
M

=
εx(1− α)

[εy′M(x+ α) + x+ 1]2 . (7b)

If x is neither very large nor very small and ε(1−α) is large, the amplitude can be large.
Thus, while the iterative method is unconditionally convergent at large and small x, it
is not so everywhere. Figure 2 shows an example in which the Fraser iterative scheme
diverges. As predicted, this occurs when ε(1 − α) is large. The scheme continues to
converge at large and small x but the iterates buckle at intermediate values of the free
variable.

4. Stabilized iteration

Fraser’s method generally works extremely well [2,8,13–15]. Of course, as we
have shown above, there are excellent reasons for this: It produces a sequence of
functions which rapidly converges to the equation of the manifold both near the equi-
librium point and very far away from it. It therefore makes an excellent starting point
for a globally convergent method.

Thomas et al. [18] have described a method for stabilizing numerical iterative
processes. Their method relies on a simple transformation of the equation being
solved which leaves the fixed points unaltered. It has long been known that point
and functional mappings are related in such a way that methods applicable to one can
often be extended to the other [1]. (This property was used in an earlier paper in this
series [13] in which Aitken’s sequence acceleration method was used to accelerate the
convergence of a sequence of functions generated by Fraser’s method.) We thus adapt
the stabilization method of Thomas, Richelle and d’Ari to our manifold approximation
problem.

We start with the functional equation (5) and add A(x)y to both sides, where
A(x) is an arbitrary weighting function:

y +A(x)y = F (x, y′) +A(x)y.

Of course, this transformation does not alter the fixed points of the original functional
equation. Now rewrite

y =
F (x, y′) +A(x)y

1 +A(x)

and label

yn+1 =
F (x, y′n) +A(x)yn

1 +A(x)
(8)
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Figure 3. Slow manifold (solid line) and approximations generated by the modified iterated mapping (8)
with weighting function (10) for the same parameters as figure 2. Iteration is again started from the y

nullcline (– – – –). The first (– · – ·), third (· · · ·) and fifth (– · · ·) iterates are shown.

to obtain a new iterative scheme.
The weighting function A(x) is chosen by performing a linearized stability analy-

sis of scheme (8) about the slow manifold yM as we did for Fraser’s method. In this
case, we get

δyn+1 =
δy′n

1 +A

dF
dy′

∣∣∣∣
M

+
A

1 +A
δyn. (9)

We first note that if we choose a function A which is positive everywhere in Γ+, the
effects of this modification to Fraser’s method are, first, to decrease the amplitude of
the term involving the derivative of δyn and, second, to introduce a new term in δyn
whose amplitude is fractional. If A is very small we recover Fraser’s mapping. When
A is very large, the amplitude of the derivative term is annihilated but the new term
causes slower convergence. Thus, this method represents a tradeoff: We can dispel
divergence due to the derivative but convergence will be slowed. We thus want A(x)
to be as small as possible, but sufficient to cause iteration to converge. In particular,
if the Fraser scheme converges automatically in some part of phase-space, as it does
for the Michaelis–Menten mechanism near the origin and at large x, we want A(x) to
be small there in order to preserve this property.

Examining the form of equation (9), we conclude that it should be sufficient to
choose

A(x) >

∣∣∣∣dFdy′

∣∣∣∣
M
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and, given equation (7b) and the fact that y′M > 0, we see that the function

A(x) =
εx(1− α)
(x+ 1)2 (10)

satisfies all of our criteria. Note that A(x) vanishes as x→ 0 and as x→∞, preserving
the excellent convergence properties of the basic scheme at the extremes. This is a
direct consequence of modeling the function A on the amplitude of the linearized error
propagator.

Iteration of equation (8) with A(x) given by equation (10) converges almost as
quickly as does iteration of the basic scheme when the latter converges. When the
Fraser method produces a divergent sequence, the sequence produced by the modified
mapping (8) converges, albeit slowly. Figure 3 shows the result of applying the
modified mapping using the y nullcline (equation (3b)) as a starting function with the
same parameters as were used to produce figure 2. Slow (but reasonable) convergence
is observed.

5. Conclusion

The method we have developed here for stabilizing functional iteration requires
a few steps, some of which may be difficult in particular cases:

1. As much information as possible is obtained concerning the fixed point under
investigation (behavior at extreme values of the arguments, etc.).

2. The mapping is transformed by the method of Thomas, Richelle and d’Ari to an
equivalent functional mapping.

3. The modified mapping is linearized about the fixed point of interest.

4. The weighting function is chosen from an analysis of the linearization. This is
the most difficult step of the process and, in some cases, there may not exist a
weighting function which both adequately suppresses divergence and leads to ac-
ceptable rates of convergence. Furthermore, even when good weighting functions
exist, it may be very difficult to extract one from the error analysis. However,
it may be possible to guess a reasonable form in many cases. If difficulties are
encountered here, it may be sensible to go back to step 1 to see if any important
geometric information about the function being approximated has been neglected.

In short, either technical or theoretical difficulties may prevent a successful application
of the method described in this paper to any given problem. Nevertheless, it is a
potentially extremely useful addition to a theoretician’s bag of tricks.
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